欢迎光临~科士达UPS_科士达UPS官网_电源精密空调官网 4007655808
语言选择: 中文版 ∷  英文版

新闻中心

科士达UPS电源用户关心的22个问题

长期以来,多数UPS电源厂商的研发部门把精力放在提高转换效率、提高功率密度、提高输出电压稳定度(调整率)以及传输失真度等UPS电源指标上,很少从研发实验室的仪器堆中“走出来”到UPS电源用户使用的现场去办公,很少花精力去拜访UPS电源用户,很少过问UPS电源用户在应用过程中关心的问题是什么,也很少有权威的专业机构认真研究用户在使用过程中面对的技术问题。
第 1 类问题--生命周期成本
    这类问题一般是UPS电源用户的高级决策人员、财务管理人员首先关心的问题。UPS电源 系统的购买通常视为固定资产的投资行为,所以长期及短期的投资回报率和投资风险是他们首先考虑的重要问题。
    问题 1:如何能优化投资和可用空间、避免UPS电源容量的浪费及能否做到“边成长边投资”问题
    通常情况下,用户在设计采购方案时,需要考虑到未来的业务发展。例如,如果业务量
以每年 20%的速率增长,则 5 年后所有 IT 或通信设备的负载量将是第 1 年的 2.5 倍。所以,最初采购时就要考虑到未来的需求。为了适应业务发展的终期目标,许多用户采用“一次到位”的方式采购 UPS电源。从对UPS电源装机运行 5-10 年的用户的调查发现,用户的设计容量(即UPS电源 的购买容量)用户设备的预计负载量以及用电设备的实际负载量之间存在着很大差异。、从一般平均情况来看,在首次装机时预计负载量只是设计容量的 30%,而实际负载量又只是预计负载量的 30%。换句话说,在最初装机运行时,UPS电源 的实际负载量仅为 9%左右。随着业务的发展,用电设备逐年增加,在第 5 年时预计负载量增加到设计容量的 80%左右,而实际负载量只达到设计容量的 28%。
UPS电源 配置容量与实际运行容量的统计数据如图 1 所示。实际上,大容量UPS电源的用户对系统可用性的要求非常高,几乎全部使用冗余并机系统,所以实际的购买容量比上述的容量大 1.5 倍(3 台并机,2+1 冗余)或 2 倍(2 台并机,1+1 冗余)。从图 1 中还可以看出,用户在UPS电源容量上的投资,70%以上都被浪费了。事实说明,在大容量UPS电源供电系统的用户中,这是一个普遍存在的问题。所以用户提出是否有一种办法可以解决这个问题,能否有一种能够“边成长边投资”的方案。
图 1:UPS电源 配置容量与实际运行容量的统计数据
   问题 2:空间或称占地面积的问题
   如何提高 IT 设备所占空间与其他基础支撑设施所占空间的比例?对于部分UPS电源用户(如远离市区的工厂或 IDC 等)来说,空间根本不是问题。但对于那些位于商务区的数据中心机房和旧机房的扩容改造或者将其他办公用房改造为机房的来说,基础支撑设施所占据的空间是个令人头痛的问题。基础支撑设施,通常指机械和电力基础设施。机械设施通常包括IT 机房空调等,电力基础设施包括发电机组、UPS电源 系统、电池系统、输人开关柜和输出配电柜等。随着 IT 设备的小型化(刀片式服务器的出现就是一个例子),人们发现 IT 设备的空间与基础支撑设备的空间的比例有越来越小的趋势,这使得用户的心里感到不平衡--有一天是否会尴尬地发现:不能直接产生利润的基础设施竞会比直接产生利润的 IT 设备所占用的空间还大?有没有一种方案能够压缩整个基础支撑设施所占用的空间呢?
   问题 3:装配速度问题
   市场瞬息万变,对于企业来说,“快”是生存之道。构建一个数据中心,不仅电源系统的各个部件存在着交货周期问题,而且方案设计、系统安装等也需要时间。大型UPS电源系统、柴油发电机、大型开关设备等需要很长的交货周期,这一点已是人所共知。用户必须提前 6个月购买这些系统和设备,若其中间环节稍有差迟,用户的起用时间就会被推迟。在极端情况下,甚至出现当用户启用设备时市场已经变化,最初的设计方案已经彻底过时。尤其是在近几年来 IT 行业的萧条时期,有些用户必须提前 6 个月购买拟建中的数据中心的各种设备,6 个月后他们才发现到了一个进退两难的境地,因为他们的项目已经因为后期资金的限制而被迫取消或缩减了规模。这样,他们便被这些定购的设备困住了。
   通常情况下,因系统的进度及可用性要求的不同,数据中心的实际建设时间一般要 3-18个月不等。用户希望能够缩短从作出决定进行修建到实际建成并投人运行的时间。
   问题 4:服务合同的费用问题
   大型UPS电源系统及一些电力基础设施的其他组成部分的复杂性,加上缺乏技术娴熟、经验丰富并经过高级培训的技术人员,导致服务合同的费用居高不下。随着系统使用年限的增加,用户的运营费用不断上升。更令用户感到不平的是,服务费用都是按照UPS电源的装机容量来报价的,尽管用户实际只用到UPS电源容量的 70%以下甚至只有 10%。用户非常希望能够找到降低系统复杂性的途径,以此来简化所需要的服务并降低服务合同的费用。
   问题 5:投资风险问题
   针对UPS电源系统的投资,是否有灵活的退出策略?变幻莫测的市场环境,使所有企业的决策者对未来的业务的不确定性感到不安。这种对未来业务的不可知性,直接导致对 IT 设备及电力基础设施投资的风险性。目前的电力基础设施需要大量投资,但没有可变通及灵活的退出策略。许多用户都在试图寻求能够在项目启动失败时提供简单而经济的退出策略。
   除此之外,许多用户都在租赁的办公环境内办公,数据中心的办公室也在其内,而且通常在 2-5 年内就搬迁到新的办公环境。对于当前的基础设施而言,若要搬迁到其他地方.要么技术上不可行,要么将需要一笔很大的开支,因为现有的数据中心基础设施并不能搬迁,而是需要重新购买。总之,用户都希望能够在各种情况下低成本地退出。
  第 2 类问题--UPS电源 系统的可适应性及可扩展
   问题 6:系统和部件的标准化与规范化
  如何降低系统的设计风险,这是当前 IT 机房设计和实施过程中普遍思虑的问题。目前大型UPS电源用户的电力基础设施变得越来越复杂,多种品牌型号的 UPS电源、输人输出开关装置、信号及动力电缆的布线等,导致了大量的现场工程设计工作和设计方案的多样性,大大地增加了用户或技术顾问公司、设计院的负担,顾问工程师会因为设计的复杂性和资源配置问题而承担极大的风险。用户和顾问公司都希望有一种方案能够使所有部件标准化、规范化,这不仅可以降低设计和施工的工作量,还可以降低设计和组建的风险。
   问题 7:不可预测的功率密度问题
  用电设备的功率密度,即单位体积内或单位面积内负载消耗的电功率,在随着技术的发展而增大。举例来说,五六年前,一台典型的 IT 机柜内可以放 5~8 台服务器,功率密度大约为每个机柜 1.0~1.5 kW。如今,随着刀片式服务器的面市,在极端情况下每个机柜内负载量甚至可能达到 10kW。对于未来功率密度的增大速率和程度,尽管每个用户都有自己的一套理论,但有一点是大家的共识,那就是功率密度将不断增大且无法准确预见。这种情况对于规模相对较大的数据中心来说会带来两方面的问题:一是在 IT 设备因业务增长而追加设备的过程中,不同区域或不同机柜内的功率密度会变得不均衡,这样会在数据中心内形成一些功率密度非常高的区域,从而会因大量热损耗而引起局部温升,即形成过热点,这必然要对散热设施提出更高的要求;第二方面的问题是,功率密度不均衡为设备的配电提出了挑战。一个机柜如果安装早期的服务器,也许只能容纳 10 台,即只需 10 个电源插座就够了;现在,一个机柜能容纳 40 个 1U 的服务器,即至少需要 40 个电源插座,将来这个数目还可能增加。显然.对于UPS电源的配置也提出了更高的要求。所以用户会提出这样的疑问:电力基础设施能否适应这种不断变化而又无法预测的功率密度带来的影响呢?
   问题 8:如何适应不断变化的其他需求
  技术革新通常每隔 1.5~3 年就发生一次,数据中心也不例外。随着数据中心环境的变化,电力基础设施和其他基础设施都必须适应并满足这些要求。机柜内的设备升级更换时会导致许多其他问题,诸如新旧设备的重量密度不同、安装要求不同(如 DELL 公司的服务器不能安装在 COMPAQ 公司机柜上)、单电源设备与双电源设备对配电要求不同、交流设备与直流设备对配电要求也不同等。例如,某些服务器是双电源供电的,这样的服务器就不容易得到专为单电源服务器设计的基础设施的支持,反之亦然。除此之外,UPS电源 容量的扩展也是用户十分关心的问题。UPS电源 扩容时的问题主要有以下 3 个方面:第一是新旧UPS电源系统的兼容问题,如果新增加的UPS电源与现有的UPS电源的品牌不同甚至品牌相同而机型不同,都会增加额外的服务费用、增加操作难度并可能影响原系统的可靠性和可用性指标;第二是新扩容的UPS电源与现场环境的匹配问题,用户担心万一最初设计时不够全面,那么在UPS电源扩容升级时会不会发生预留给新增UPS电源的空间不够,改动输人输出布线是否需要改变房屋结构等新的问题;第三是UPS电源扩容升级过程中会不会被迫中断现有业务。实际情况是为设备扩容而停业半天的情况时有发生,而他们的用户似乎习以为常了。但是,现在的要求不同了,许多行业需要 24h 不间断运行的业务,无论什么原因,哪怕是设备升级,中断几分钟也将被视为重大事故,所以UPS电源用户非常希望有一种不停电扩容的解决方案。
   问题 9:断路器数量增加以及断路器指标的离散性问
  在传统的集中式UPS电源设计中,UPS电源 和关键负载之间安置了许多断路器,实际上每个断路器都是一个单路径故障点。许多用户已经开始认识到断路器这一单路径故障点对关键负载的可靠性的重大影响,换句话说,每一个断路器都是影响输出业务的潜在隐患,所以断路器
数量越多,关键负载可靠性就会越低。另外,相同指标而不同厂商的断路器,其运行过程中
的实际动作稳定值也存在着很大差异,例如一个标称 20 A 的断路器动作电流是 20 A,而另一个标称 20 A 的断路器动作电流可能只有 17 A,这在很大程度上影响了数据中心路保护机制。情况最糟糕时,下游断路器可能不会动作,而最终导致上游的断路器动作,结果发生大面积负载掉电的情况。用户希望能够减少UPS电源与负载之间的断路器的数目以及使用更加标准化的断路器。
  第 3 类问题--如何提高UPS电源可用性
  许多UPS电源厂商都开始重视UPS电源系统的可用性问题,常见的提高UPS电源可用性的技术是采用冗余技术和可热插拔的模块化设计。但是,当人们把目光从UPS电源本身移到整个电力基础设施系统的时候就会发现,影响用户设备供电的可用性的因素其实还有许多。
  问题 10:操作人员人为操作失误的问题
  根据美国权威调查机构 UP TIME INSTITUTE 提供的信息 54%的宕机故障都是人为因素造成的。许多其他的组织也对这一数据进行了调查,有的估计值甚至高达 75%-80%。无论确切的百分比是多少,大家都一致认为造成宕机的首要原因是人为因素。其中,大部分是由于目前数据中心复杂性极高而又缺乏处理这类复杂系统的专业技术人员等原因造成的。除此之外,针对如此复杂的系统,对人员进行的培训也远远没有达到所需要的水平。众所周知,那些执行机要任务的飞行员和舰长们都经过上千小时的培训性实践,而且培训初期都采用了模拟装置,但是没有一家企业对数据中心的管理人员的培训能够达到这种水平,而且他们往往只是自学式的在职培训,再加上这些行业内的人员的高流动率,我们就很容易理解“人为因素”是宕机或可用性丧失的首要原因了。用户非常希望得到一种能够很容易减少人为因素
的解决方案。
  问题 11:如何把UPS电源与关键负载之间的故障点减至最少
  许多造成关键负载宕机的故障发生在UPS电源与关键负载之间。过去,用户通常在 UPS电源以及发电机之间引人冗余设备,从而提高UPS电源和发电机的可靠性,但是他们往往忽略终端配电一级的单路径故障点,例如他们在UPS电源和关键负载之间设置多个断路器,而且UPS电源和关键负载之间的距离很长。在调查过程中,我们经常发现UPS电源放置于地下室而负载放置于 5楼的情况,所以希望冗余设施距离负载能够更近一些,并且减少UPS电源和关键负载之间的断路器数量。
  问题 12:减少大面积断电的故障点
  人们从不希望宕机事故的发生,但现实中不可能绝对不宕机,所以,一旦发生宕机便希望故障的影响能尽量局限在小范围内。用户在设计整个供电系统时往往会在集中式供电或分
布式供电这两种方案中犹豫不决:集中式供电有许多优点,但它有一个致命缺陷,那就是一旦UPS电源 系统发生故障,所有设备均会因停电而宕机;分布式供电能够解决大面积业务中断
的危险,但是存在不易管理等缺点,用户希望能够消除并控制自己电源系统的故障。
  问题 13 :UPS电源 对供电系统的谐波干扰问题
  从表面上看来,UPS电源 的谐波干扰并不会影响自身的可靠性,但是同一个供电系统中若接有多台UPS电源时,每台UPS电源都相当系统内部的一个干扰源。高次电流谐波都是无功的,是造成设备输入功率因数低的重要原因。无功和谐波电流对供电系统的影响是多方面的,例如导致电网电压畸变,严重干扰系统内和使用同一电网的其他用电设备,影响变压器、发电机、电动机、电容器的正常运行,使其损耗增大、发热、绝缘老化,缩短使用寿命,导致异步电机转矩降低,振动加剧,噪声增大,引起继电保护自动装置误动作,导致计算机等精密电子设备运行不正常;对通信线路、测量线路产生辐射干扰,影响电能计量精度等;无功电流的存在必然增加电网容量和系统配置容量,增大能源损耗和运行成本,而附加的为了改善输人功率因数和降低输入电流的谐波成分的滤波器,不仅重量、体积和成本都显著增大,还存在着电路发生振荡的可能。谐波电流还是造成系统零地电压差增大的主要原因,会影响计算机设备的正常运行,此时需要利用更粗的电缆和更好的接地系统来补偿。总之,用户希望能够减少UPS电源产生的谐波干扰。
   问题 14:用户内部以及用户与厂商之间的信息共享问题
   目前,由于各种设备安装的复杂性,在各种现场会碰到一些特别的问题,故障发生时对故障根源的分析变得非常困难。用户反映基础设施部件中存在太多的变化,希望能够通过全
球统一标准的系统收集数据和比较结果以及规范校正和处理的措施。他们希望同一机构内不同场地的机房能够使用同样设备,从而使公司内不同部门的管理人员能够相互共享管理经验
及故障处理经验,也希望UPS电源供应商能够提供这些技术知识。
   第 4 类问题--UPS电源 对供电系统的可管理性
   问题 15:UPS电源输出的分路管理问题
   用户对其数据中心内的分支电路的超载问题比较关心,主要原因是不断有越来越多的设备插人系统中,导致分支电路的负载增加甚至过载,还有其他的原因比如授权的用户和未受
权的用户在输出端插入用电设备,而该设备(非关键性设备)是根本不允许与关键电源及UPS电源 输出相连接的。分支线路过载时,断路器就会动作,本支路内连接的机柜或所有设备
就会宕机。在极端情况下,会发生保护该过载分支电路的断路器不动作而引起上游断路器动作,这将使更多的机柜或更大范围的设备发生宕机。用户非常希望能够获得可管理的输出,
以便能在上述故障发生之前得到报警。有些用户甚至提出希望能够控制配电插座上的每一个插孔。
   问题 16:监控负载机柜的电源状态
   机柜使用量大的用户往往希望能有一些安装在本地的显示装置以提醒维护操作人员可能发生的故障。目前要弄清楚每个机柜上的电源状况是很困难的,但在有些情况下即使能够
查看每个机柜上的电流,也需要通过远程管理界面来查看。用户希望能够在巡查过程中看到每一个机柜的各个输出插座的电流情况,从而查明设备是否在正确的范围内工作。
   问题 17:线缆管理问题
   传统的配电系统工程设计施工,往往都把输出配电柜安装在高架地板上,并通过多个支
路把单相电源分配给各 IT 设备。随着业务的发展,IT 设备不断被追加安装,机柜上的功率密度不断增加,这就必须把更多的电缆连接到配电柜上。如果机柜使用 2N(双总线)设计,机柜就需要有 A、B 两路供电电缆。如果再考虑高密度服务器数量有进一步增加的趋势(1U高度的服务器乃至刀片式服务器),在极端情况下,一个机架上甚至可以安装 200 多个刀片式服务器,而所有这些服务器都需要 1 根或 2 根电源线及几根网络电缆,这样就使数据中心的电缆数目大大增加,成为管理和宕机风险方面令数据中心的管理人员头痛的问题。有时,用户为了查找一根电源线的来源甚至要花几十分钟或一两个小时。如何改变电缆的混乱状况,改善电缆的管理水平呢?
   问题 18:预防性故障分析问题
   数据中心机房管理的重要内容之一是预防性故障分析。预防性的故障分析一直是数据中心电源系统难以实现的一个课题,用户一直依赖劳动力密集的预防性维护操作、红外线探测
等作为检查核实潜在问题的方法,而这些乏味的重复性工作往往需要受过专业训练、经验丰富的工程师完成。用户希望电源系统应该具备足够的智能水平以及自我诊断能力,以便能够
在故障实际发生之前发现并排除这些潜在故障。
   第 5 类问题--可服务性
   问题 19:减少平均维修时间 MTTR 问题
   电源基础设施的平均维修时间是指从故障发生、故障报警到管理员发现并判断故障位置、原因,从而通过更换部件使系统恢复正常的平均时间。系统的易管理性是减少平均维修
时间的前题。然而很多用户已经认识到,故障判断后,部件的更换往往是减小平均维修时间的关键。许多供应商提供了响应时间的承诺,比如 4h 响应的承诺。供应商在多数情况下能
够兑现承诺,服务工程师在 4h 内能赶到现场,但问题是赶到现场是一回事,是否携带了合适的备件又是另一回事。用户经常会发现服务工程师因带错备件无功而返的情况。如果用户
自身在装机时同时购买常用部件,这种情况会有所改善,但用户端的储存条件又不能保证备件的“完好性”,另外,自备配件也会占据用户宝贵的空间。总之,用户希望能更准确地解
决故障和修复时间更短。
   问题 20:降低系统的复杂性问题
   目前的电力基础设施是非常复杂的,基础设施的许多子系统和各部件也同样有越来越复杂的趋势。在并机系统、多模块UPS电源系统、负载总线同步装置和大型近代开关等之间,要
迅速准确地判断故障是非常困难的事情。比如,将系统转人旁路状态,对那些不十分熟悉现场的操作人员来说,简直就是一种挑战。系统的复杂性会带来两方面的影响:其一是系统越
复杂,操作人员和管理人员产生人为失误的可能性就越大;其二是系统越复杂,系统发生故障时对故障进行定位诊断需要的时间越长,从而使修复时间加长。用户非常希望能够降低数
据中心基础设施的复杂程度以及提高操作的容易程度。
   问题 21:带电操作的问题
   带电操作通常被认为是当前数据中心电源基础设施中无法避免的一个弊端。目前许多数据中心的电源基础设施中都采用了冗余技术,当多个冗余部件中的一个部件发生故障时并不
会给管理员带来“恐慌”,真正给管理服务工程师带来“恐慌”的是如何取出故障部件并更换新的部件。因为根据业务的需求,更换过程是不允许停机操作的,换句话说,这个过程需要带电操作。带电操作既对管理工程师的人身安全产生了威胁,同时也增大了操作失误的机率,严重时还会引起关键设备宕机。所以,数据中心的管理人员希望能够有一种可以减少电
力基础设施中不得不实施带电操作的方法,此外许多国家和地区的健康与安全法规都正在做出禁止带电操作的规定。
   问题 22:供应商之间相互推诿问题
   目前由于系统的复杂性,数据中心的设计者和用户要与越来越多的设备厂商打交道,各厂商的设备之间的配合以及各厂商的工程师与工程师之间的配合变得越来越复杂。当系统中的某一个环节出现问题时,各厂商的工程师往往从自身利益角度出发而不是从整个系统的角度出发来判断、认定和解决问题。他们往往会自觉或不自觉地推卸责任。各方的工程管理人员往往在解决问题的现场会上唇枪舌战,使本来复杂的问题变得更加复杂而难以解决。争论的焦点往往会从解决问题、发现解决问题的方案本身转移到发现其他设备的缺陷方面去。甚至有的用户抱怨说,在这种情况下他们已经从一方职员变成一个必须善于斡旋的“政治家”。用户非常希望能得到一种解决方案,它能减少或消除供应商之间的相互推诿。
   以上五大类 22 个问题是从涉足数据中心市场的设计工程师、顾问工程师、设备经理、IT 经理、CEO、项目经理那里征求的意见总结归纳出来的。需要说明的是,对于某一个数据中心而言都会关心这些问题,但不同的用户在不同的场合下会更关心其中的某些问题。

   解决这 22 个问题并不是一朝一夕可以做到的,但它既然是当前数据中心UPS电源供电系统存在的问题,也必然是所有UPS电源供电系统普遍存在的问题。问题决定着需要,因此这 22 个问题将成为高可用UPS电源供电系统技术发展的主要依据和动力。

 自主研发产品替代进口品

        UPS是电力电子技术的应用领域之一,科士达通过外购电力电子器件,运用自主研发的变流技术,实现将“粗电”变为“精电”功能,为重要负载设备提供稳定可靠的优质交流电源。

        然而,对于这些技术的研发和应用,公司大致可分为三个阶段。在2001~2003年期间主要进行在线式中功率等级UPS产品研制,兼顾三相中大功率UPS产品的开发与研制工作;2004~2006年期间,公司抓住全球UPS产业向我国转移的机遇,开展“产学研”合作,先后研制出具有国内先进水平的数字化中大功率高频UPS、大功率工频UPS、集成一体化UPS;2007~2009年,公司采用DSP数字控制、嵌入式软件、高频整流、多电平逆变、智能化储能系统等先进技术,着力研发和制造具有完全知识产权与国际领先水平的高频数字化、模块化UPS系统装置及多台并联型高频数字化大功率UPS。“可以说,公司历经上述三个发展阶段,已成为国内UPS产品系列最为齐全的厂商之一,产品广泛应用于各行业领域,畅销世界多个国家和地区。易事特的技术发展历程是坚持自主创新,不断研发新技术、新产品并逐步替代进口产品的过程。”徐海波说。

        何思模认为,制造企业要想突围升级就必须创新发展,而创新发展的本质还是在于提升企业和产品的质量,因为创新如果不能为企业带来有质量的增长,其开展将毫无意义;创新研发生产的产品如果没有质量的优势和保障,搞这种创新研发的制造企业也就失去了自己的“生命”。

        据了解,在2008年广受金融危机冲击的时候,凭借自主知识产权的优势易事特获得了逆势增长。按何思模的话说,因为公司拥有自己的品牌并掌握产品核心技术,也就有了定价权,金融危机等外围环境的变化对企业影响不大。

       新产品抢占有效市场

        研发投入与回报要对等,才能可持续下去。何思模对此有非常清晰的认识。通过数据也可以看出,科士达在技术研发上的投入都有显著的回报。数据显示,2010年、2011年、2012年和2013年1~6月,公司核心技术产品(在线式UPS、EPS及分布式发电产品)销售收入占营业总收入的比例分别为68.68%、69.75%、66.94%和72.24%。相应地,易事特这些年研发投入占营业收入比例分别为4.79%、5.24%、5.35%、5.42%。

        科技成就梦想。秉承“技术创新、自主品牌”发展理念的易事特着力组建博士后科研工作站、院士专家企业工作站、现代电能变换与控制工程研究院等科研及技术开发机构,并不断优化由全球著名轨道交通电气专家钱清泉院士和全球著名新能源专家张榴晨院士领衔的国际高端科技攻关团队。而且与清华大学、浙江大学等全国20多所大学院所建立起长期的战略合作关系,包括不限于技术、人才等方面的合作。

        受益于持续强化科技创新,科士达着力构筑起业界领先的强大技术优势。目前公司研发生产的UPS电源、数据中心集成系统、光伏逆变器、光伏发电电气设备与系统等品牌产品。

        光伏逆变器、光伏发电电气设备与系统等战略新品是易事特抓住战略机遇大力进军新能源光伏产业。徐海波介绍,公司在UPS产业基础上凭借市场敏感,在新能源革命即将到来之前,开始走向“装置-系统-网络”新能源产业技术发展路线,大力发展新能源产业。

联系我们

联系人:王培

手机:15210159464

电话:400-7655-808

邮箱:15210159464@126.com

地址: 北京市大兴区旧桥路25号院3号楼2层205