大型数据中心的基础设施系统主要分电源、环境控制和机房监控管理系统。由于大型数据中心承载企业、集团、机构的核心业务,重要性高,不允许业务中断。因而大型数据中心一般根据TIA942标准的Tier4标准建设,可靠性要求99.99999%以上,以保证异常故障和正常维护情况下,数据中心正常工作,核心业务不受影响。
1、电源系统,通常选用多路市电源互为备份,并且机房设有专用柴油发电机系统作为备用电源系统,市电电源间、市电电源和柴油发电机间通过ATS(自动切换开关)进行切换,为数据中心内UPS(不间断供电电源)、机房空调、照明等设备供电。由于大型数据中心业务重要性,通常采用双母线的供电方案供电,满足大型数据中心服务器等IT设备高可靠性用电要求。双母线供电系统,有两套独立UPS供电系统(包含UPS配电系统),在任一套供电母线(供电系统)需要维护或故障等无法正常供电的情况下,另一套供电母线仍能承担所有负载,保证机房业务供电,确保数据中心业务不受影响。在UPS输出到服务器等IT设备输入间,选用SPM(服务器电源管理器)进行电源分配和供电管理,实现对每台机柜用电监控管理,提高供电系统的可靠性和易管理性。
对于双路电源的服务器等IT设备,可以通过SPM直接从双母线供电系统的两套母线引人电源,即可保证其用电高可靠性。对于单路电源的服务器等IT设备,通常选用STS(静态切换开关)为其选择切换一套供电母线供电。在供电母线无法正常供电时,STS将自动快速切换到另一套供电正常的母线供电,确保服务器等IT设备的可靠用电。
图示双母线供电系统可确保供电可靠性高达99.99999%以上
2、环境控制系统,通常选用机房精密空调对数据中心的环境调节,确保服务器等IT设备的运行环境。对于发热量大的服务器等IT设备,通常选用高通孔率(一般大于70%)网孔门的机柜,提高机柜进出风量;将机柜面对面、背对背布置,在机房内形成冷热隔离的风道,提高制冷效率;空调采用下送风方式,确保机房送风均匀,提高制冷效率。
在某些功率密度特别高场合(发热量超过5kw/机柜),往往容易产生局部热点,形成故障隐患。为消除局部热点,需要采用相应的高热密度解决方案,如开放式方案即为在局部热点发生处加装制冷终端XD,加强局部制冷能力,以消除局部热点;封闭式方案即为高功率密度设备放置在封闭机柜内,通过机柜内制冷循环,高效率制冷散热。
3、机房监控管理系统,大型数据中心需要对电源、空调等设备运行状态进行管理,同时还需要对机房内环境,如温湿度、漏水、烟感等参量进行监控,确保数据中心工作在一个正常的范围之内。并对数据中心设备运行参数和环境量实时监控和管理,同时远程监控和管理,实现机房无人值守。
这个自带设备(BYOD)和移动设备的时代给IT经理稳定企业网络和连接带来了巨大的挑战。除了确保服务器正常运行之外,保护存储和网络设备、宽带连接、接入点、调制解调器和路由器,免受由功率瞬态引起的潜在损害,维持业务的连续性,也同样至关重要。在确定UPS规模时要考虑IT基础设施增长的速度,并确定短期增长需要多少“冗余”。
UPS可扩展性
如果企业无法预计自身IT基础架构的未来走势,那么使用可扩展的标准UPS是一种方式;但如果未来需求不确定或仅是快速增长,模块化UPS可以为企业提供有效的解决方案。UPS如Galaxy VX具有可扩展性,通过增加功率模块柜而非全系统更换,支持未来负载和运行的扩展。按需付费的方式有助于匹配UPS和IT电源,提高系统效率,并最大限度地降低运营成本。
UPS后备时间
在美国,大多数的停电会持续5分钟至1小时。为应对长时间停电,数据中心需要配备多路市电输入或备用发电机组。由于ATS或备用发电机在1分钟以内即可完成切换或启动,因此UPS通常只需配置5~15分钟的储能电池即可。同时,UPS需兼容铅酸蓄电池和锂电池,以适应未来储能发展的需要。
UPS管理
DCIM数据中心管理软件,可以为IT管理员提供便捷的远程监测和控制;同时主动式电池和环境诊断可以大大减少停机时间;先进的UPS管理帮助优化系统操作,安全关闭系统,保护数据和设备免遭停电导致的崩溃。
曾几何时,为了能够积极主动地管理不断上涨的电力成本,使得数据中心内的配电系统俨然成为了数据中心运营商们的一大主要的关注领域。更具体地说,其是为了帮助操作运营人员们实时的识别运行过程中的电力消耗的潜在问题,并杜绝浪费。而随着越来越多的具备未来思维的企业组织开始广泛的分享他们在设施和IT管理过程中所总结的知识和经验,使得这种基于机架的电力基础设施中推动了更加的智能化已然变成了更高的机架功率密度的当务之急。事实上,在企业数据中心内的分配链中的所有阶段实施积极主动DE 电源管理已经成为效率研究和数据中心基础设施管理(DCIM)风格优化倡议的要求。
现代数据中心
多年来,数据中心运营管理人员们所唯一高度关注的问题便确保数据中心服务的持续正常运行。企业数据中心内部的IT部门几乎很少关注电力资源消耗和冷却方面的议题,因为这些资源似乎是无限的,并且往往被认为是基础设施团队的负责范围。IT专业人士只知道电力资源是可用的。数据中心业界的所有人都关心SLA和正常运行时间的问题。 “实现5个9的可用性”,是一个常见的需求,而几乎不用担心成本,电力使用或效率。基础设施服务的设计和管理仅仅只是关于冗余,而且电源和冷却系统的过度配置已然成为了标准的做法。长期以来,企业组织仅仅只是简单地将预算分配给数据中心业务部门,但却并没有详细掌握这些资金到底是如何使用的。IT就像是一个黑盒子和一张空白支票。随着业务需求、密度和计算需求的增加,这种运维已然被证明是不可持续的,且必须改变。
几年前,我们就已经注意到,几乎很少有企业组织不关注于效率、监控、电力成本或“绿色环保”方面的话题讨论。市场的竞争压力、政府部门的干预和一定的常识驱使企业组织为了生存,需要完全了解其每款IT设备所被部署的具体位置、提供的服务、以及每瓦特的功率到底被消耗到了哪些地方。有了这一组目标,下一步通常便是进一步分析市场上广泛的DCIM解决方案中的其中之一。
在过去的三年中,整个业界通过加强整合和建立更高密度的数据中心,进一步收紧了数据中心的电源预算。曾经42U 5kW的机柜是业界的普遍标准,而许多更新的数据中心现在采用的则是45U-52U 17kW的机柜。此外,这些数据中心正在以高度模块化的方式构建,同时人们也理解了需求的增长可以是快速和不可预测的。
PDU作为一款系统
配电的系统方面是什么?其开始于能够将大量的PDU(配电单元)设备作为单个系统处理。单个智能PDU,就像数据中心内的其他设备一样,必须借助操作系统更新、功能/安全补丁以及配置详细信息实施维护。当将电源分配看作一款单一的系统时,必须消除对单个系统的这种要求;然而,系统还应该保持对来自各个组件设备自身的所有高度智能化功能特征的访问。这可能包括高精确度的功耗报告,远程访问指标和功率状态的功能,以及在许多情况下在设备级别开关电源的高度安全的手段。
对于一款完整智能化的、能够提供简单的配置、多功能报告、容量规划和无缝集成的能源监控系统的需求,是任何大规模数据中心电源解决方案的关键性要求。每台机架内的电源分配设备是通向IT设备负载的电力链中的最终链路,故而机架PDU是用于精确测量诸如绿色网格组织所推荐的PUE值或最新的DCeP指标的最佳位置。随着数据中心的效率工作团队持续的能耗测量工作的开展,同时业界的相关机构也在持续不断的发表以数据中心以能源议题为中心的白皮书,如绿色网格组织的《数据中心PUE测量建议》和ASHRAE的《数据处理环境——热处理指南》 ,使得企业组织积极主动的管理能源消耗,并通过诸如PUE和DCeP等关键绩效指标获得对于其能耗测量结果的相关基准支持得到了越来越多的支持。
许多其他方面议题的白皮书也不断发表,议满足数据中心的效率目标,这些议题包括配电策略、功率链配置、设备规格、冷却方法、以及监控这些参数的软件工具。但往往被忽视的一点则是:没有以一种连贯的方式将大量类似的组件作为一个单一的实体来实施监视、管理和控制。
本文中,我们将为广大读者们介绍如何借助简单的配置将几十、几百或甚至几千台机架PDU作为一个单个连续层进行管理。正是这个电源层通过多功能报告提供了关于数据中心内的IT负载的能源使用信息,然后用于PUE、DCeP及其他指标。本文还将为您展示如何部署和配置一款适当的能源管理系统,以便在高密度数据中心消除容量规划监测能力方面所需涉及的大量的时间和压力,并提供了被绝大多数全球性的跨国企业所计划和实施的与持续DCIM无缝集成的额外的方法。
电源层的挑战
当前,数据中心行业所面临的挑战可以说是昨天的挑战的延伸。机架PDU电源层被视为现代数据中心最重要的组件之一,并且,一些新的解决方案在几大关键领域正在被评估:
● 适用于大量机架式PDU的系统方法
● 在更高操作温度环境下的可靠性
● 整个数据中心的功率和设备密度的提升
● 机架/机柜内的设备级电源监控
● 能量度量指标的准确性和深度
● 安全状态控制
● 环保意识
● 版本控制/设备管理和配置
● 对DCIM的支持
● 整体价值
系统方法
如前所述,为监控和管理电源层设备增加智能化以加强对能源使用、效率和成本的了解,为管理这些设备创造了额外的责任。对于机架PDU而言,有必要找到进行硬件更新和配置的有效手段,以及如何从该硬件获得大量测量数据的有效手段。
可靠性
即使业界目前开始关注起效率问题了,但正常运行时间和硬件可靠性的目标将继续成为任何依赖于其数据中心运营的企业组织的首要任务。配电链的任何部分,包括机架式PDU,必须在面对所有压力的情况下保持预期的长期质量和可靠性,以充分考虑在数据中心所花费的每一分钱。好的数据中心设计师和运营人员们都知道这一点,并都在寻求这样的高质量设备。随着整个业界开始要为更高的密度要求(每台机架/机柜高达20kW)和更高温度的“热通道”(60摄氏度或更高)做好准备,这一点变得更加重要了。
功率和设备密度的提升
“以更少的付出换得更多的收益。(Getting more for less)”已然成为许多领先的以“大数据”驱动的数据中心的口头禅。他们正在将更多的设备打包到更少的数据中心操作运营空间中,并且利用更多的功率,而不管单款设备的效率如何。这种高密度的数据中心模型需要一种模块化方法来延迟资本支出,直到绝对需要。在这种情况下,至关重要的是要精确地了解功率在功率分配链中的各个级别的使用情况,并尝试预测好时间以增加容量。
设备级电源的监控
为了获得数据中心中最详细的功耗信息,管理人员必须从使用点获取相关的指标。从PUE / DCeP的角度来看,这最好是在IT设备的输入处完成。具有出口级测量的机架PDU允许企业组织实现此目标。凭借有关设备的实际使用的信息,数据中心/ IT管理人员可以做出更好的决策,而不仅仅是使用哪些设备,而且还要考虑何时使用特定的应用程序。从长远来看,对这些信息的分析有助于充分优化电力和IT基础设施的利用率。
能量度量的准确性和深度
所选择的PDU的可用的度量指标的准确性和细粒度是非常重要的。虽然先前几代的PDU很少或几乎没有功率监测功能,但是获得高度细粒度和精确的测量要求对于持续的优化是至关重要的。虽然许多早期的智能化PDU可能包括安培数作为唯一的度量指标,但是最先进的功率处理设备包括能量感知的整个范围:在PDU内的多个位置的安培、电压、瓦数、功率因数、能量(kWh)等。这些都是非常重要的,有助于帮助企业数据中心管理人员理解在何处、何时、以及如何有效地利用电力资源;并根据数据中心所支持的业务需求的变更、改进和增长做出相应的决策。
安全状态的控制
在数据中心内控制对所有设备的安全访问的手段是相当重要的。具有可切换插座的机架式PDU可以解决这一挑战,并允许设备重新启动,插座锁定,固件重新加载等。对于许多企业客户而言,插座级控制是数据中心管理员们常常关注的问题。需要安排恰当的人员在恰当的时间获得访问权限 ——而没有例外。在这些控制点只应考虑最高级别的安全。
环境意识
了解数据中心机架/机柜内的环境条件,特别是随着功率密度的增加,也是数据中心管理人员们所关注的一大问题。支持环境传感器的轻松部署,而不必消耗大量的硬件、线缆或成本是与机柜内的配电设备天然适合的。传感器可以提供关于相关联的功率如何转换成热量的直接反馈,以及其中的哪部分被转换成浪费的热量的间接反馈。
版本控制/设备管理和配置
机架PDU上的智能监控和管理通常来自嵌入式固件。这样的固件,就像你企业的通用计算机软件那样,通过版本的修订添加功能或修复错误。至关重要的是,其是以受控的方式进行管理的,以保持其可靠性和安全性等重要因素达到相应的标准。由于PDU存在于跨企业部署的每台机架中,因此必须维护或更新的附加设备的数量变得相当惊人。故而企业组织所选择的能量管理系统应该允许能够简单方便地维护整个PDU。
DCIM支持
智能化的机架PDU与功能强大的能源管理系统相结合,是企业组织在计划未来几年的任何形式的DCIM工作的要求。 DCIM本身便是一个快速增长的细分市场,其依赖于电源层的智能化创造出大量的价值。对于一些企业组织而言,完整的DCIM解决方案是一次性的需求;但对于其他企业组织来说,成本和时间的初始支出导致他们需要缩减到更易于管理的能源管理系统解决方案。对于选择慢启动的企业组织来说,选择一款能够轻松集成到完整的DCIM解决方案中的能源管理系统是非常重要的。
整体价值
选择具有所有所需功能的机架PDU是一回事;而配置、安装和部署这些机架PDU,以便实现电源监控和管理的目标则又是另一回事。易于设置和日常使用信息流已经成为数据中心中的主要关注点。缺乏相应的计划和恰当的工具,会很容易在这些监测任务中落后。故而这就是选择准确、可靠、易于使用的PDU和能源管理系统所能够发挥其用武之地的时候了。掌握必要的数据以便在数据中心做出决策,用最少的资本投资和时间投入,提升整体价值。数据中心能耗智能化考虑到上文中所列出的一系列的挑战,很明显,当您部署一看智能化的配电系统与设计良好的能源管理系统协作时,肯定会带来巨大的价值。您数据中心将获得了巨大的能源意识水平,而正是这种能源意识直接为所有正在进行的DCIM计划做出了贡献。您可以在机架级别了解和管理数据中心电源的所有方面,而不会招致不合理的新的管理开销。如果这些事情被明智地选择,您可以获得轻松的配置,多功能的报告,容量规划和无缝集成以及许多其他有价值的工具。
简单的配置
除了设置阈值之外,基于测量点的警报只有当电力系统的部分被正确命名时才有意义。为此,基本的资产管理通常被内置在能源管理系统中。此外,一些系统允许用于设备的固件版本控制、通信链路控制和访问控制的更详细的配置管理。
多功能报告
仅仅是偶尔对数据中心中的功率使用情况进行测量,就声称对其有了了解是不够的。采用绿色网格组织所推荐的PUE和DCeP指标来对IT设备负载进行持续的测量,对于真正理解数据中心所使用的容量以及了解功率链中每一步的功率使用趋势是非常重要的。精心设计的能源管理系统将提供数据输出,以减少每日,每周和每月任务的工作负载,而不会增加繁琐的维护任务。
容量规划
实施能源管理系统的常见原因之一是容量规划,特别是在高密度模块化的数据中心。不仅要了解有多少功率可用,而且还需要确切地了解哪些电路可用,这对于优化数据中心基础设施的使用是非常重要的。机架式PDU的监控是理解整个数据中心的电源使用细分的最佳位置。不仅可以使用在机架/机柜处的测量来理解分支电路的容量开销,而且,通过适当地聚合汇总,可以对上游各阶段所分配的安培数进行预估。
无缝集成
虽然对于许多企业组织来说,对于能够将数据中心内的所有设备的监视和管理纳入到一款单系统的渴望还在继续,但是对于许多企业组织而言,当今可用的专用工具已经以最好的价格提供了既定的的值这一事实已经是变得非常清楚的了。这些工具可以集中在诸如机架配电层、网络层、服务器利用层或冷却控制层之类的任何一层上。这些专业工具的最重要的方面是,当需求出现时,他们能够很容易集成到那些更大的DCIM或BMS系统中。
电源管理
控制数据中心中插座的电源状态的功能在一些行业中是有争议的,而在其他另一些行业中则是非常重要的。无论是重新启动锁定的服务器还是远程位置的交换机,关闭未使用的插座,以避免数据中心中的电路意外过载,或在实验室应用程序中提供计划的插座使用,切换插座均有其用武之地并且肯定具有其价值。凭借高级别的安全性和用户身份验证,一些机架式PDU符合这一挑战,并结合了安全的插座状态控制功能。选择一款具备基本资产管理的能量管理系统可以允许实现单个插座的方便的开/关/重新启动命令,群组插座代表了一款单个设备,集群插座则代表了一组设备。电源链的完整性和冗余性
空调用保温材料经过多年的发展,也由最早的石棉、玻璃纤维等到岩棉、橡塑等,各有独自的特点。要正确评价一种保温材料的性能,必须要有能够全面反映保温材料性能的指标。保温材料的性能指标大致有以下几种:导热系数、密度、吸水率、透湿系数、防火性能、吸声系数、抗化学性能、耐老化性、尺寸稳定性等。而在空调系统的使用中对以上性能指标要求可以看出,导热系数、吸水率和透湿系数是保温材料的重要性能指标。对空调系统设备和管道保温尤其重要,因其表面温度一般都在空气露点以下,如果处理不好,就可能进水或受潮,导致保温性能下降,破坏保温节能效果,并可能引起外壁结露。另外,保温材料的防火性能也是选用保温材料的一个重要参数。由于保温材料防火性能差引起的火灾事故屡见不鲜,因此,保温材料的防火性能越来越受到重视。
2.2、常用空调保温材料的性能分析
以下对目前常用的几种空调保温材料的性能进行简要分析,以便在机房精密空调工程保温材料选择时参考。
2.2.1、玻璃棉
玻璃棉属于玻璃纤维中的一个类别,是一种人造无机纤维。采用石英砂、石灰石、白云石等天然矿石为主要原料,配合一些纯碱、硼砂等化工原料熔成玻璃。在融化状态下,借助外力吹制式甩成絮状细纤维,纤维和纤维之间为立体交叉,互相缠绕在一起,呈现出许多细小的间隙。这种间隙可看作孔隙。因此,玻璃棉可视为多孔材料,具有良好的绝热、吸声性能。
2.2.2、岩棉
系非燃材料,其防火、抗老化及抗化学性能良好,缺点是防水性差,施工时必须注意作好防潮处理。岩棉因其保温性能适中,价格低廉,对于一般标准和造价受到限制的工程,仍有一定的竞争力,不宜将其排除在外。
2.2.3、聚苯环保泡酚
产品为密闭气孔泡沬酚醛硬质保温材料,具有难燃性,遇火不燃,表面只呈碳化现象,不熔故无滴落物,不碎裂,不变型,无明显收缩,不散发有毒有害气体;具有低吸水性,耐水隔潮性优良;低热传导系数;施工简便,本产品为硬质材料。易于切割、安装,外层如采用夹筋加强铝箔等护面,可无需外加金属硬质护壳,节省整体成本投资。
2.2.4、自熄聚苯乙烯泡沫塑料
该材料保温性能尚可,其主要问题就是最高使用温度为70℃,与冬季空调供水设计温度(60~65℃)已相当接近。经工程调查,发现机房精密空调水管采用自熄聚苯乙烯泡沫塑料瓦保温,运行一段时间后,保温瓦出现变形并与管道脱离现象。其原因就是,其耐热性能差,空调供水有时超过了70℃。因而,不适合用在冷暖两用机房精密空调水系统保温中。
2.2.5、阻燃聚乙烯泡沫塑料(PEF)
阻燃聚乙烯泡沫塑料质轻、导热系数小,尺寸稳定,防水性能好。其产品型材厚度为6—40mm,便于合理选用。
2.2.6、橡塑海绵保温材料
橡塑海绵具有柔软、耐屈绕、耐寒、耐热、阻燃性能好(B1级难燃材料)、防水导热系数低、减震、吸音等优良性能。同时,施工方便、外观整洁美观,没有污染,是一种高品质的新型绝热保温材料。
联系人:王培
手机:15210159464
电话:400-7655-808
邮箱:15210159464@126.com
地址: 北京市大兴区旧桥路25号院3号楼2层205