1科士达UPS的现状
经过几十年的发展,UPS技术El新月异,管理体系不断完善,功能更加强大,应用范围也随着现代科技的发展不断的扩大。
1.科士达UPS技术方面
(1)现已广泛采用与传统谐振式ZUS、ZCS软开关不同的广义软开关技术,来减小开关损耗,提高开关频率。这种软开关就是一种无损缓冲电路,它不但能使开关过程软化,而且还具有电路简单,不需要附加谐振网络,成本低廉的特点。输入端加装高效输入滤波器和有源功率因素校正器,并采用串并联补偿技术,来降低输入电流失真度,减小UPS电源对市电电源的污染,使其向绿色电能变换型发展。
(2)为实现科士达UPS电源小型化,减小输出变压器即输出滤波器的尺寸,减小电磁干扰,防止高频变压器的饱和,目前在韩国采用的是串联谐振逆变器,再经过隔离变压器和变频器组成高频连接的UPS。
(3)数字控制已成为新型UPS控制技术发展的主流,即广泛应用数字处理器DSP,尽可能使控制电路全微处理器化。因为数字控制器具有精度高,抗干扰能力强,易于实现对UPS的检测,故障诊断和隔离,易于实现遥控遥测,易于实现多台UPS的并联和热插拨,易于实现对蓄电池的监控和管理,也就是说,计算机的介入可以使UPS实现智能化管理,可以使电源运行在最优化状态。
(4)蓄电池是科士达UPS的心脏,目前UPS一般都使用免维护密封铅酸蓄电池,美国还运用了高功率铅一空气备用电源装置(RPU)取代蓄电池。为增大电池的使用寿命,目前使用一种三阶段电池管理方案,即恒流均衡充电,浮充充电和自然放电三大阶段,以防止过充、过放。现已引入以微处理器监控技术为主的电池管理体系,随时观察电池的充、放电状态,对电池充、放电进行双重保护。
(5)采用冗余技术和热插拨技术。
(6)采用智能化UPS的管理系统。所谓智能化UPS,是指将传统的UPS与计算机相连的硬件接口,结合特殊设计的软件,以提供计算机及数据资料的双重保护,保证UPS在完成基本功能外,还能对一切故障进行检测,显示和处理等,完全实现网络化监控管理。
1.科士达UPS管理体系方面
UPS供电系统从产生至今已有40余年,40年的历程,UPS发展到今天已经不再是孤立的电源技术的发展,UPS本身不再是单独的电源系统,目前所说的供电机房,已成为一体化网络系统,集不问断电源、机柜、电源管理、散热、电力电缆和数据布线为一体的全套电源供应与管理整体方案。
这就大大便利于用户的选购、安装、维护和扩容,降低日常管理和维护的成本,并能对整个网络中的硬件设备、运行程序和数据以及数据的传输途径进行全面保护,使之成为不间断供电网络,此网络还具有可靠性高,抗干扰能力强,过载能力强,智能化监控及防雷击、防浪涌等功能。
1.科士达UPS设计原理和工作方式方面
目前可以分为离线式、在线式、在线互动式三种UPS。
(1)离线式UPS,也称为后备式UPS,以小功率(5kVA)为主,主要特点是转换效率高,易于维护,且价格低廉,转换时间为几ms,为绝大多数中小功率用户首选。
(2)在线式UPS以大中(5kVA以上)功率为主,供电转换时间为零,供电质量高,可以向用户的负载提供纯净、稳压、稳频、抗干扰和波形失真极小的正弦波,但价格昂贵。
(3)在线互动式UPS以网络使用为主,它结合了离线式转换效率高和在线式供电质量高的特点,与离线式相比,切换时间短。
1.科士达UPS功能方面
UPS除了稳压、稳频、不问断供电基本功能外,逐步增加了自我控制功能、对外告警功能、集中监控功能、环境检测功能、自动开关机功能、联网功能、电池自动补偿和检测功能、低功率损耗功能、直接并机功能、对线性负载和非线性负载具有同等输出的功能,及并机时功用电池或分用电池的功能等。
1.科士达UPS应用方面
在原有的商用UPS、变频UPS、工业用UPS的基础上,为适应市场的需要又增加了计算机用UPS、有线电视用UPS、小灵通UPS。所以UPS目前已广泛应用于金融、电信、政府、制造行业、教育和医疗等方面。
2 发展趋势
市场需求促进了UPS性能的不断提高,科技的进步则推动了UPS技术了不断的向前发展,使UPS向高频化、冗余并联化、数字化、可靠化、智能化、绿色化、经济化发展。
2.1市场需求方面
(1)大容量级别的UPS将达到9000台/每年的需要,并以10%以上速度不断增长。小机市场“火爆”,市场潜力巨大。据有关人士估计,UPS电源需求量为:93.8万台/05年,102.5万台/06年,133.4万台/07年,122.3万台/08年。
(2)产品性能/价格比是赢得市场占有率的永恒主题。
(3)企业要走出跨国经营,不仅要创出国际品牌,还要使品牌在跨国经营中“本土化”。
要想在市场上长久发展,除提高性价比外,还要提高服务质量,以适应市场产品深层次竞争的兼并整合状态。
2.1技术方面
(1)科士达UPS高频化:第一代UPS的功率开关为可控硅,第二代为大功率晶体管或场效应管,第三代为IGBT(绝缘栅双极晶体管)。
大功率晶体管或场效应管开关速度比可控硅要高一个数量级,而IGBT功率器件电流容量和速率又比大功率晶体管或场效应管大得多和快的多,使功率变换电路的工作频率高达50kHz。应用新工艺器件,并采用柔性切换技术,来解决由于切换损耗导致的高频限制,实现UPS电源高频化。变换电路频率的提高,使得用于滤波的电感、电容以及噪音、体积等大为减少,使UPS效率、动态响应特性和控制精度等大为提高。
(2)科士达UPS冗余并联化:在一台电子设备中,我们可以把控制电路集中起来作为一个独立的可插拔的模块,也可以把功率变换部分集中在一个结构中做为一个可热插拔的模块,同样,在一个配置有多种(台)设备的供电系统中,我们也可以把每种(台)设备看做一个模块,在冗余热备份配置的情况下,同样可以做到故障后进行热插拔修复。当代的技术先进的UPS都具备直接并机功能,如果把这样的UPS两台冗余并联起来,并使两台输出的总容量大于等于负载容量的二倍,当其中一台发生故障时,另一台可承担全部负载容量而保持系统继续正常运行,已故障的一台可脱机修复。这无异于把系统的等效平均修复时间降到接近于零,只有两台UPS同时发生故障时,系统才停止运行,而这种几率是很小的。
(3)科士达UPS数字化:数字控制已成为新型UPS控制技术发展的主流,数字控制器具有精度高,抗干扰能力强,易于实现对UPS的检测、故障诊断和隔离,易于实现遥控遥测,实现多台UPS的并联和热插拔,易于实现对蓄电池的监控和管理。采用数字控制技术、数据采集技术、信号处理技术、电源管理技术、网络通信技术、计算机硬件及软件技术来实现的电源实现了人机完美结合。
(4)科士达UPS可靠化:对于使用者来说,要求UPS具有足够的输出能力及可靠性,否则就会影响负载的运行,甚至构成新的故障源。采用先进的工艺封装技术、高度的集成化技术、运用高品质的元器件和原材料,不断提高UPS电源的可靠性和可用性,力争可用性A为0.9999999,也就是说,一年之中允许停机时间≤3s。这些数据才是用户真正需要的结果。
(5)科士达UPS智能化:微处理器在UPS上的应用,过去只在大、中型UPS上采用,但近年来已逐渐向小型、微型UPS方面发展,其带来的结果是UPS的智能化发展,包括控制、检测和通信。UPS逐渐由计算机来进行管理,并且计算机及外设能“自主”应付一些可能预见到的问题,能进行自动管理和调整,如自动关闭宿主计算机的操作系统并关闭其电源,定时开关UPS本身等,并能将有关信号通过网络传递给操作系统或网络管理员,便于进行远程管理。真正的做到计算机集中监控代替人力职守,又计算机的智能化实现人们的“傻瓜操作”。
(6)科士达UPS绿色化:各种用电设备及电源装置产生的谐波电流严重污染电网,随着各种政策法规的出台,对无污染的绿色电源装置的呼声越来越高。UPS除加装高效输入滤波器外,还应在电网输入端采用功率因数校正技术,这样既可消除本身由于整流滤波电路产生的谐波电流,又可补偿输人功率因数。整流器使用IGBT技术,可将输入功率因数提高到接近于一,对电网的污染已降到了近似阻性负载的水平。另外,高频脉宽调制技术、多脉冲整流技术、电磁屏蔽和滤波技术、广义的软开关技术、串并联补偿技术等技术也是实现UPS绿色化的有效途径。
(7)科士达UPS经济化:低成本高性能的高频机也将在一段时间之后成为市场的主流机型。该种机型UPS是在上述未来主流机型基础上省去了输出隔离变压器,大大节省了成本,大约为上述机型的60%,极具市场竞争力。缺点是目前该种技术不够成熟,可靠性较低。但是,随着技术水平的提高,可靠性将会大大增强,相信不久的将来,该种机型将成为未来UPS的新型主流机型。
3 如何选配科士达UPS
一台科士达UPS至少可以使用3年以上。用户在挑选UPS电源时,应根据自己的要求来确定挑选标准,选择最适合自己身业务需求的UPS,而不是最便宜或最高档的。
(1)使用者对UPS的各项指标应有一个全面清晰的了解,这是正确合理选配UPS的必要条件。UPS(确实)是一种含有储能装置(蓄电池)和控制电路,以逆变器为主要组成部分的恒压装置。它的主要作用是当用电设备遇到外部供电系统发生中断或超出要求范围时,能不问断地为用电设备提供稳定、干净、高品质的电源环境。(目前按其设计原理与工作方式可分离线式、在线式和在线互动式三种,)用户应充分了解各类UPS的技术参数、电气性能和适用范围,并根据自身负载的特点合理选配UPS。
(2)在关注性能价格比的同时,首先要关注UPS的输出能力和可靠性、UPS对电网的适应能力、UPS的常规输出性能指标,特别要注意所采购UPS是否能够达到国家已经出台的UPS生产制造规范。
(3)因为电池的采购要占UPS采购成本不小的一部分,电池的运行状况、使用寿命直接影响到UPS功能的发挥,所以要选购具有电池智能化管理技术的UPS。
(4)要选购具有功率因素校正技术、电流谐波抑制技术、电磁兼容设计技术、静音设计技术的UPS。
(5)尽量选用知名企业的名牌UPS产品。因为这些企业不仅具有检测设备齐全、先进、能够保证产品质量的能力,而且还具有服务意识强,能主动为用户提供售前、售中、售后的全程式服务,对用户信息响应速度快的特点。
为确保UPS系统安全可靠的运行,在选用UPS时,还应考虑其防雷击和防浪涌的能力、过载能力、带负载能力、可维护能力、可管理能力等因素。
总之,UPS确实是供电系统的核心设备,如何选择、配置UPS,对用户至关重要,应尽力选择、配置性价比高的UPS,确保自己设备安全、可靠的不间断供电。
尽量避免过电流充电
过电流充电易造成电池内部的正负极板弯曲,使极板表面的活性物质脱落,造成电池可供使用容量下降,情况严重时会造成电池内部极板短路而损坏。
尽量避免蓄电池过电压充电
过电压充电往往会造成蓄电池电解液所含的水被电解分离成氢气和氧气而逸出,从而使电池使用寿命缩短。
更换活性下降、内阻过大的电池
(1)随着科士达UPS电源使用时间的延长,总有部分电池的充放电特性会逐渐变坏,端电压明显下降,这种电池的性能不可能再依靠UPS电源内部的充电电路来解决,继续使用会存在隐患,应及时更换。
(2)由于蓄电池内阻增大,当用正常的充电电压对电池进行充电已不能使蓄电池恢复其充电特性时应及时更换。电池的内阻一般在10--30mn,如果电池的内阻超过200m巴则将不足以维持UPS的正常运行,对内阻偏大的电池必须更换。
避免新旧蓄电池混用或新旧电池混合充电
由于新电池的内阻都比较小,而旧电池的内阻都有不同程度的增大,当新旧电池混合在一起充电时,由于旧电池的内阻大,分压会相对偏大,极容易造成过电压充电现象;而对于新电池,内阻较小,充电电压小但电流偏大,又容易造成过电流现象,所以在充放电过程中应避免新旧电池混充。
蓄电池的使用环境
电池的使用寿命与环境温度密切相关,电池处于较低温度时,蓄电池中的锌板容易粉化,失去蓄电性能,造成永久性损坏;温度过高时,电池的容量也会下降,情况严重时会造成永久性损坏。根据电池生产厂家的技术规范,电池的最佳使用温度是2~25℃,在该温度范围使用,可延长电池的使用寿命。
总之,做好UPS蓄电池的维护工作,可以减少UPS的故障,提高系统运行的稳定性。通过对电池的维护可以提高电池的使用寿命。
在UPS电源的使用中,有一些看似细小但对UPS电源的寿命影响却是很大的因素,可能与我们的UPS电源说明书上写的相差甚大,其实不是UPS说明书上的问题,只要遵循UPS电源使用注意事项是完全可以让您的UPS电源得到最大化的效能,所以说正确使用和维护UPS电源是非常重要的。很多用户仅限于产品说明书中的注意事项,其实,合理地维护和使用UPS电源,是需要贯穿UPS电源的整个生命周期的,当然除去UPS电源不需要经常用的情况下是不考虑进去的。
UPS电源首次充电有技巧新购置UPS电源后,要将UPS电源插入220V市电电网中,充电至少12小时以上,以确保电池充电充分。UPS蓄电池的实际可供使用的容量将大大低于蓄电池的标称容量。柏克四川提醒广大UPS用户应每隔2~3个月开机24小时,让其充电充分,并让UPS电源处于逆变器工作状态下2~3分钟,以保证电池的正常寿命。UPS电源一旦接通市电,即开始对电池组充电,持续按开机键1秒以上进行开机,即开启逆变器。
另外禁止将不同安培数、不同品牌的电池组合使用。在此提醒广大UPS用户在更换电池时应先关闭UPS电源并脱离市电,使用带绝缘手柄的螺丝刀,不要将工具或其它金属物品放在电池上。连接电池线时,在接头处出现细小火花属正常现象,不会对人身安全及UPS电源造成危害,千万不要将UPS蓄电池正负极短接或反接。更换蓄电池时,不宜个别更换,最好整体更换。
在UPS电源里,成本最高、最重的元件之一是输出变压器。由于用来束缚频率的变压器磁心材料的成本和重量减小的可能性很小,在过去20年电力电子的巨大进步中,在改变电路原理后,已经可以做到不需要输出变压器。用电力电子元件替代变压器,可以使UPS电源的制造变得更经济,未来的成本还会得到进一步优化。
几年以前,这一技术已经在较小功率、特别是在单相、lOKVA以下的UPS电源领域应用,在200kVA以下的中功率领域也得到了开发。而大功率领域的开发则刚刚起步。
这一新原理包含在称之为真在线UPS原理之中。利用这一原理,UPS电源可以依据EN62040标准的第三部分予以设计,并依据最大输出功率指标这一工作特性进行分类,属于VFl-SS-111类。对于中功率和大功率电源,本文的讨论焦点集中于三相,并不关心UPS的其他技术。
2变压器的作用
在图l所示的无变压器电路原理中,过去由变压器所完成的各项功能现在必须由电路的其他元件和(或)适当的控制机制来完成。
变压器的最重要功能之一是使逆变器的输出电压适应设备的输出电压。传统的UPS原理配备了一个可控的或不可控的整流器,这就产生了直流回路电压,该电压总是小于上游平均电压的峰值,并在欠电压工作期间产生DC回路电压的最低值。如果电池照常与直流回路直接连接,那么,在充电电压和放电终了电压之间变化的电池电压将成为附加电压,已经计算出在一个400V的UPS电源里的这一电压大约是300V。如果一个三相逆变器在这样的直流回路电压下工作,那它形成的三相交流电源的线电压约为200V,将这一电压调整到下游400V电压的工作由输出变压器完成。
400V电压是绝大多数具有负载中线的四线制的电压,而一个三相三滞环逆变器产生的是无中线的三相电。通过输出变压器的DY或DZ矢量组的设计使生成由三滞环逆变器馈电的四线制成为可能。见图2。
由传统SCR和二极管整流器产生的DC回路电压还相对于一个恒定的DC回路电压(从正到负)进行振荡,该振荡与上游以每秒l50周的频率进行馈电的系统中线有关,这时,由逆变器产生的三相系统以及它的假想振荡中心不仅与上游中线有关,还与下游输出中线有关,因为输出中线通常是直接接地,或者是经由旁路接地,这一必要的振荡可能只是输出变压器电绝缘的作用。
UPS的输出电压由逆变器产生,这是输出电压的基础,还要用脉宽调制的方法,用几kHz的脉冲频率将它调制成方波信号。为了抑制脉冲频率并让波形规整,用电感和电容设计一个能够有效过滤二次谐波的过滤器是必不可少的。因为电感通常用变压器的漏电感,所以变压器就成了输出滤波器的单元之一。
由于输出变压器对三相的不平衡和直流组分极其敏感,因此必须给逆变器配以合适的电磁电流控制器,以避免电流中的直流组分。然而由于输出变压器的存在,自然就要对接在输出端的负载进行保护,以免受变压器的作用,因为变压器总是要通过饱和作用对逆变器的三相系统产生*。
3变压器功能的实现
为了实现没有变压器的UPS,变压器的功能必须用电子元件和特别适合的控制原理来替代。见图4。
为了产生每秒50周的名义上的400V输出电压,电路类型和逆变器控制是实质问题。为了产生三相四线制输出的中线,输出滤波器的设汁,特别是对于非线性负载下的理想的动态存储,都必须在700V至800V的直流电压区间进行计算。这一电压必须是在所有的工作模式下都有效(一般工作、电池工作,还有在电池的最后放电电压下工作)。
无变压器UPS的一个特殊挑战是三相四线输出的可承载中线的产生。对于这一功能,无变压器UPS的逆变器与使用变压器、或者是驱动应用情况下使用变频器的UPS的逆变器具有相当大的区别。如今,对于这样的逆变器通常有2种电路解决方案。
一种解决方案是将逆变器的直流回路用2个开关串联做成。DC回路电容的中心与输出中线相连(见图5),从而DC的电势被固定并与三相系统相关联。结果是DC回路电压必然处于下列范围:
这种中线产生方法是很经济的,因为DC回路总是存在着2个串联的开关电容。不利的是,由于直流回路间电位的高低不同而产生的三次谐波部分比较大,增加了电容负载,因此在设计DC回路电容时,必须以和单相负载一样的方法对待。
可供选择的另一个简单的解决方案是用第四个逆变滞环产生中线(见图6)。这种情况下的DC回路的直流电压比较小。
这一电路的价格相对比较贵,这是因为第四个逆变滞环必须设计成一个可用于非线性负载的电源,中线电流中的三次谐波不是加在零上,而是加到额定相电流的倍上面,作为中线的逆变滞环的设计必须比三相滞环的设计严格很多。
这里还解释了在DC回路中使用较小电压将被受到限制的可能性。通过控制与DC回路的假想中心相关的逆变器第四滞环来改变三相系统的中心(中线),在输出端中线接地的情况下(主要形式:TN或TT),将导致DC回路电压相对于地的位移,反之亦然。对于一般工作模式的整流器必须能够做到让DC回路电势的位移成为可能。值得注意的是,输入和输出网点可能变得相互太不对称,因此,这种形式的DC回路位移是临界的。在变压器UPS中,这一电势的位移是通过输出变压器的直流隔离来实现的。见图7。
作为输出滤波器一部分的变压器漏电感是比较容易用相同电感量的扼流圈来替代的。然而必须使用单相扼流圈,因为必须让UPS能够向不对称负载馈电。
在无变压器UPS中,要特别注意三相对称情况及输出电压的直流组分的随意性。因为这对于设备本身的工作并不是直接必要,但必须假定相连的负载对这些十分敏感,有可能没有任何先兆地随时发生。利用现代的程序控制和高精度的信息电子学控制,可以做到没有任何问题。
4决定无变压器原理的其他元件
逆变器的DC回路电压的增加还需要改变与DC回路相连的其他一些电路元件。
4.1电池连接
在传统的变压器和SCR整流器UPS中,电池通常直接与DC回路连接,根据DC回路的电压决定电池的充电。当从普通工作状态向电池工作状态变化时,在供电线路上不应该有任何变化。
DC回路电压的增加可以用增加电池的数量来调整。尤其在高功率情况下,通常存在的是并联电池组,从并联向串联的变化常常会有一些损耗,如保护元件和电缆必须改变以适合新的电压要求,如果正电池组和负电池组需要分开,还得增加安装成本。
由于这一原因,采用比较合适的电池数量是很有意义的,然而,这已经是过去的事情。在这种情况下,需要使用DC-DC变换器来调整电池和逆变器DC回路之间的电压。这个DC变换器必须能够执行2个区的工作,允许电池充电和放电。
4.2整流器
在UPS正常工作期间,DC回路的供电*整流器产生,因此,整流器必须能为逆变器提供较高的DC直流电压,整流功能和电压调整功能可以分别执行,也可以同时执行。
在小功率无变压器UPS原理中,这些功能通常是分别执行的。一个简单的不可控整流器产生DC电压,再通过升压变换器给逆变器提供DC回路电压。这种形式的整流器的优点是在整个工作区都具有高的功率因素,然而同时伴随的是高达30%的输入电流的失真因子。
用于中功率UPS的另一个概念是使用IGBT脉冲整流器(又称为主动调谐器),它也具有一致的功率因素,同时它的输入电流失真因子低于3%。
用于电池连接的新原理是上面所述的不同整流器的功能与DC变换器功能的良好结合,将IGBT整流器(功率因素一致、输入电流失真小于3%)的优良特性与过去通常使用的电池数量调整法同时结合使用。
这样,无变压器逆变器所必须的整流器和较高电压的DC回路的成本就可以限制在节省了变压器的限度内。
5高功率UPS电源的其他重要特性
如今,高功率UPS已经被认为是一个装置的重要的、不可忽视的组成部分,根据这个事实,有必要对高功率UPS特别提出其他一些重要特性。
例如,前些年,对l6A以下UPS的输入电流的谐波分量的限制值已经作出了规定(标准IEC61000-3-2),而直至现在用于16A以上电流的标准IEC61000-3-4也没有对中、高功率的UPS及其系统进行标准化。
然而,一个标准化输入电流的定义并不是最重要的,更重要的是业已存在的对于网格中任意一点的电压畸变的定义(EN50160)。并有必要依据定义确定一个短路功率或是一个对消费者有利的网络(正弦)输入电流。见图8。
高功率电源经常是馈电变压器的主要用户,因此他们的特性变得与网格的电压品质有关。具有正弦输入电流的网络友好型UPS可以降低与传统UPS相关的上游部分装置的花费。
另一个不可忽视的方面是在突发事件发生,动力电失效的情况下,UPS经常要在它的自主范围以外供电,因此对短路能力有着很多的限制,以至很大的注意力集中在UPS输入的网络友好性,以便在没有大的馈电发生器的条件下获得可接受的电压畸变。
再一个在高功率应用中需要特别注意的重要特性是UPS的动力软接入。首先意味着从电池工作向正常工作变化的开通变化要小。对于具有分离整流器和升压变换器的低功率UPS,整流器原理是唯一可限制的因素。因为开通期间功率必须取自于电池或上游网格。
还有一个需要特别关注的情况是突变情况下的工作。一种是在工作模式由电池向正常工作变化时,负载在额定输出范围内的非常快的变化,这种情况几乎是不允许发生的,它将导致瞬时的动态效应而损害电源的安全。
新的整流器原理利用对输入功率的转换速率进行限制,使得无论是在以正弦波形连续工作时,还是在工作模式发生变化的瞬态过程,对于馈电网络都是友好的。
6结论
无变压器UPS在更高功率领域的实现可能是没有什么问题的。早在前些年,就已经在中小功率范围实现了,如今发现它也可以在高功率领域实现。这些概念除了需要改变逆变器电路外,还需要改变电池连接和整流器。人们所熟悉的整流器的进步使得它在高功率范围,无论是稳态还是瞬态的网络友好性成为可能。
联系人:王培
手机:15210159464
电话:400-7655-808
邮箱:15210159464@126.com
地址: 北京市大兴区旧桥路25号院3号楼2层205